INTRODUCTION
Automobiles are considered to be an essential element of modern society, as they make human life more convenient and expand living space. As income levels have increased in South Korea, the number of registered automobiles has continued to grow, exceeding 23.5 million units in 2019 [
1]. This increase in vehicles eventually led to an increase in traffic accidents, and an economic research report was submitted, indicating that traffic accidents impose an enormous burden in terms of economic damage and rehabilitation costs [
2]. Both domestically and internationally, researchers have conducted studies on risk factors for the incidence and severity of traffic accidents, and found that the speed of the vehicle, meteorological conditions, and time of day were related factors [
3-
6]. According to Lee et al. [
7], accidents on highways have higher severity and mortality rates than those on local roads, and accidents in the evening and early morning have higher mortality rates than those at other times of day. This is because accidents on highways involve higher vehicle speeds than those on local roads, and injured victims may face delays in reaching emergency medical treatment. As the total length of highways increases, with a concomitant growth in the number of accidents, it is necessary to analyze risk factors for the incidence and severity of traffic accidents on highways to plan an appropriate emergency medical system to improve patients’ prognosis. For this reason, the authors conducted a study to analyze the frequency and severity of accidents according to vehicle type, the specific location of the accident, the time of occurrence, and meteorological and road conditions, using data from patients who presented to a regional trauma center due to highway traffic accidents.
METHODS
This research porject was approved by Institutional Review Board (IRB) of Chosun Univiersity Hosipital (IRB No. 2020-10-006).
Research subjects
From January 2018 to June 2020, 722 patients (in 137 traffic accidents) who presented to the regional trauma center due to a traffic accident that occurred on a highway with four or more lanes were analyzed. Patients were excluded if they were under the age of 18, were transferred more than 24 hours after the accident from another hospital, or lacked accurate data on accident mechanisms or patient-related characteristics.
Research method
The study was conducted in a retrospective manner by collecting electronic medical records and trauma-related records for patients who presented to the trauma center due to traffic accidents. The study collected clinical data, including the Revised Trauma Score (RTS), Injury Severity Score (ISS), and Trauma Injury Severity Score (TRISS), which were used as indicators of the severity of trauma; demographic data, such as age and sex; and vital indicators, vital signs, and seat position at the time of the accident. Clinical data, such as length of hospitalization and mortality, were also collected. In addition, traffic accident–related variables included the type of vehicle, the location of the accident on the highway, the time of the accident (dawn: 2 AM to 8 AM, daytime: 8 AM to 2 PM, evening: 2 PM to 8 PM, and night: 8 PM to 2 PM), highway conditions, and meteorological conditions at the time of the accident were also collected and recorded.
Statistical analysis
SPSS for Windows version 26.0 (IBM Corp, Armonk, NY, USA) was used for statistical analyses. In the descriptive statistical analysis, quantitative variables were expressed as mean±standard deviation, and the categorical variables measured for each item were expressed as frequency and percentage (%). In multiple comparisons involving multiple variables, post-hoc analysis was performed using the independent-sample t-test and the Bonferroni method using one-way analysis of variance (ANOVA). For continuous variables, the analysis was performed using the independent sample t-test and logistic regression analysis with the environmental factors related to traffic accidents as independent variables and the frequency of accidents as dependent variables. Statistical findings were considered to be statistically significant when the p-value was less than 0.05.
DISCUSSION
This study analyzed the characteristics of highway traffic accidents to identify factors related to the frequency of accidents and the severity of patients’ injuries. Earlier research has demonstrated that the severity of traffic accidents is affected by several factors. Because traffic accidents on highways are highly likely to lead to serious trauma and mass disasters, Anastasopoulos et al. [
8] studied the level of accident risk in a specific road section through variable responses using a tobit analysis of severity. Roshandel et al. [
9] conducted a systematic review and meta-analysis to develop a method for real-time accident prediction according to traffic volume and road conditions. According to Yannis et al. [
10], the mortality and severity of accidents involving trucks and sedans were higher than those involving other types of vehicles. According to Liu et al. [
11], the severity of patients’ injuries was high in accidents involving large vehicles such as trucks, and highly fatigued patients had severe injuries. In particular, it was reported that the severity of injuries was high among commercial truck drivers. In our study, the severity and mortality of sedan and truck accidents were significantly higher than those of accidents involving other types of cars, aligning with the results of previous research.
According to previous studies of the risk of accidents on highways according to the type of road, the risk of accidents around tunnels was higher, and accidents were more frequent on straight roads than on curved roads [
12-
14]. According to Han et al. [
12], through a simulation experiment of the occurrence of visual impairment in tunnels, the driver’s pupil constricts while in a tunnel and the reaction to light is slow; therefore, the risk of traffic accidents increases. In this study, the frequency of traffic accidents in the vicinity of tunnels was also significantly higher than in other locations, and as mentioned above, this is thought to be due to the visual impairment caused by sudden exposure to light when entering or exiting a tunnel.
Gårder [
13] studied the characteristics of fatal head-on crashes and concluded that about 67% of them occurred on straight roads. The reason for this was that high speed limits were associated with the occurrence of serious accidents. The findings of Jones et al. [
14] indicate that the frequency and mortality of traffic accidents increased as the degree of road curvature decreased. In recent years, it seems that the increase in the speed of vehicles has been the largest factor contributing to the occurrence of accidents, as projects are under way in Korea to straighten highways. In addition, in this study, a significantly higher number of traffic accidents occurred on straight highways than on curved roads. This can be explained in light of the causes pointed out in existing research.
In addition to the shape of roads, other studies have analyzed accident time, weather-related road conditions, and climate-related factors. We analyzed the frequency of traffic accidents by time, and found a significantly higher frequency of traffic accidents at times other than daytime. Previous studies have reported that fatigued driving causes a high frequency of accidents at dawn and at night, disproportionately affecting the major occupational groups of drivers and passengers who are active at these times. Therefore, future studies should conduct occupation-specific analyses [
15]. In the analysis of risk factors of traffic accidents conducted by Chen et al. [
16], accident occurrence and severity were likewise found to be significantly higher in the early morning hours than at other times. According to Wu et al. [
17], who studied the risk of accidents on sunny and foggy days, the risk of accidents on foggy days was significantly higher, especially near highway ramps. In addition, in a report that studied the correlation between meteorological factors and the risk of accidents, the risk of accidents was high in snowy, icy, and slippery road conditions [
18-
19]. In this study, time and meteorological variables such as weather, road conditions, and temperature at the time of the accident were collected based on trauma data and the weather log information at the time of the accident. Relative to sunny conditions, the incidence of traffic accidents was about twice as high on wet roads, and the incidence of accidents on icy roads and in sub-zero temperatures was 4–5 times higher. In addition, the frequency of traffic accidents in the presence of fog was 3 times higher.
Regardless of vehicle type, the highest severity was found for patients in the driver’s seat, followed in order by the passenger seat and rear seat. According to Atkinson et al. [
20], the severity of the injuries of front row passengers in front crash accidents was higher than those of second-row passengers. In a study by Miltner et al., it was reported that the driver’s head injuries were more severe than those of other front seat occupants in car-to-car head-on collisions. There have been reports that drivers had more severe head injuries. In addition, Mayrose et al. [
21] showed that patients in the rear row seat had less severe injuries and a high survival rate. The abovementioned findings are consistent with the results of this study, but Mitchell et al. [
22] showed higher injury severity among rear-seat passengers than among frontseat passengers. The differences in existing research results seem to be due to differences in the direction of the vehicle collision, the accident mechanism, and the study design. In this study, since the research was conducted by examining 119 records retrospectively, detailed accident records could not be analyzed, and it was not possible to analyze accident-related variables such as rescue time and arrival time from the scene of the accident to the hospital. In the future, further studies should control for relevant variables, unify the descriptions of accident mechanisms, and assess severity according to the presence or absence of safety devices.
A limitation of this study is that patients with relatively low-severity injuries presented to the regional trauma center. Moreover, since the study only analyzed traffic accidents on highways near the hospital, it is not necessarily representative of highway traffic accidents in Korea as a whole. A future analysis of national data will lead to more generalizable results. In addition, the analysis of traffic accidents around tunnels was hindered by a lack of sufficient data on whether the accidents took place on access roads to the tunnel, the inside of the tunnel, or the exit from the tunnel, so it was not possible to study the chain of events involved in collisions due to road conditions and visual impairment. Further research on this topic is necessary. Moreover, when analyzing the severity of patients’ conditions, data on whether seat belts were worn and whether airbags were operated were insufficient, so these factors could not be analyzed.